Simple assay kit for measurement of Glutathione Reductase (GR) enzyme activity in tissue homogenates and cell lysates.

NWLSSTM

Glutathione Reductase Activity (Microplate Assay)

Product NWK-GR01

For Research Use Only

The product accompanying this document is intended for research use only and is not intended for diagnostic purposes or for use in humans.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Intended Use</td>
<td>3</td>
</tr>
<tr>
<td>Test Principle</td>
<td>3</td>
</tr>
<tr>
<td>General Specifications</td>
<td>4</td>
</tr>
<tr>
<td>Kit Contents</td>
<td>4</td>
</tr>
<tr>
<td>Required Materials Not Provided</td>
<td>4</td>
</tr>
<tr>
<td>Required Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>Warnings, Limitations, Precautions</td>
<td>5</td>
</tr>
<tr>
<td>Storage Instructions</td>
<td>6</td>
</tr>
<tr>
<td>Assay Preparation</td>
<td>6</td>
</tr>
<tr>
<td>Reagent Preparation</td>
<td>6</td>
</tr>
<tr>
<td>Sample Handling/Preparation</td>
<td>7</td>
</tr>
<tr>
<td>Assay Protocol</td>
<td>8</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>Statement of Limited Warranty</td>
<td>13</td>
</tr>
<tr>
<td>End User Notes</td>
<td>13</td>
</tr>
</tbody>
</table>
Introduction:
Glutathione Reductase (GR, EC 1.6.4.2) is a ubiquitous 100-120 kD dimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) using β-nicotinamide dinucleotide phosphate (NADPH) as the hydrogen donor.²

The active site for GR contains a flavin adenine dinucleotide (FAD) and a disulfide. In the presence of NADPH, there is a two electron reduction of GR to produce a semiquinone of FAD, a sulfur radical and a thiol.²

A measurable fraction of GR derived from various sources is often found as the inactive apoenzyme. Dietary supplementation of riboflavin or thyroxin has been shown to activate GR. The in vitro addition of FAD is the basis of assessing riboflavin deficiency.³,⁴,⁵,⁶

Purified GR tends to form aggregates in the absence of thiols and these aggregates retain full enzymatic activity.⁷ Purified enzyme is reversibly inactivated by NADPH, β-nicotinamide adenine dinucleotide (NADH), GSH, dithionite or borohydride. This inactivation likely requires the presence of divalent cations such as Zn²⁺ and Cd²⁺. The GR enzyme is fully protected from inactivation by ethylenediamine tetraacetic acid (EDTA). Inactivated GR is activated by GSSG, NADP⁺ and NAD⁺. In vivo, GR activity is regulated through a redox interconversion mechanism mediated by GSSG regulation of the NADPH generating pathways.⁸

Intended Use:
The NWLSS™ Glutathione Reductase (GR) Activity Assay is intended for the quantification of GR enzyme activity in biological samples such as tissue homogenates and cell lysates.
Test Principle:
The most widely used procedure to measure GR is to monitor the oxidation of NADPH as a decrease in absorbance at 340 nm as shown in Figure 1.

\[\text{GSSG} + \text{NADPH} + \text{H}^+ \xrightarrow{\text{GR}} \text{2GSH} + \text{NADP}^+ \]

Figure 1. Reduction of GSSG by NADPH catalyzed by GR.

For each mole of GSSG reduced, one mole of NADPH is oxidized resulting in loss of absorbance at 340 nm. One Unit GR activity is defined as the amount of enzyme that will reduce 1 µmole GSSG per minute at pH 7.6 and 25°C.

General Specifications:
- Format: 2 X 96 well Microplate
- Number of tests: 198
- Specificity: Glutathione Reductase Activity
- Sensitivity: LLD = 1.5 mU/mL

Kit Contents:
- Assay Buffer: 1 X 125 mL
- GR Calibrator (1-1.5 units per mL): 1 mL
- GSSG Reagent: 1 X 11 mL
- NADPH Reagent: 2 X 5 mg
- NADPH Diluent: 2 X 6 mL
- Microplates: 2 X 96 Well

Required Materials Not Provided:
Adjustable pipettes capable of transferring 10 µL to 1000 µL volumes.

Required Instrumentation:
96 well microplate reader with 340 nm capability.

Statement of Limited Warranty:
Northwest Life Science Specialties, LLC (NWLS) makes no guarantee of any kind, expressed or implied, that extends beyond the description of the material in this kit, except that they will meet our specifications at the time of delivery. Customer's remedy and NWLS' sole liability is limited to, at NWLS' option, refund of the purchase price, or the replacement of material not meeting our specification. By acceptance of our product, customer assumes all liability and will indemnify and hold NWLS harmless for the consequence of this product's use or misuse by the customer, its employees, or others. Refund or replacement is conditioned on customer notifying NWLS within twenty-one (21) days of the receipt of product. Failure to give notice within 21 days shall constitute a waiver by the customer of all claims hereunder with respect to said product.

Notes:
info@amsbio.com
www.amsbio.com
References (continue):

Warnings, Limitations, Precautions:

Possible Interference:

Samples containing substances that have significant absorbance at 340 nm will interfere with the assay by causing the initial absorbance to exceed the upper limit of the instrument. As an example, hemoglobin should not be present at concentrations greater than 1 mg/mL.

Ammonium sulfate ((NH$_4$)$_2$SO$_4$) inhibits GR activity at concentrations greater than 100 mM.

Polyvinylpyrrolidone -10 (0.1%), potassium chloride (100 mM), urea (600 mM), and Triton X-100 (0.1%) have no effect on GR activity under standard assay conditions. 30

Temperature Dependence

Glutathione reductase activity is temperature dependent. In the event that the NADPH extinction coefficient is used in analyzing data and instrument lacks adequate temperature control, the temperature correction table below can be used.

<table>
<thead>
<tr>
<th>°C</th>
<th>mRate</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>69.8</td>
<td>46</td>
</tr>
<tr>
<td>20</td>
<td>103.1</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>152.8</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>203.6</td>
<td>133</td>
</tr>
<tr>
<td>35</td>
<td>262.2</td>
<td>172</td>
</tr>
</tbody>
</table>

Figure 3. Temperature dependence was determined by measuring the rate of a GR sample between 15 and 35 °C in 5 °C increments in a thermostatically controlled cuvette

The temperature correction factor can be calculated as:

\[
\sigma = 0.0062T^{1.573}
\]

Where \(\sigma \) = correction factor and \(T \) = Temperature in °C.

Handling

Use good laboratory practices including adequate gloves and eye protection while handling and discarding reagents. Should the reagent and/or test sample come into contact with skin and/or mucous membrane, rinse quickly with a large amount of water.
Storage Instructions:
Upon receipt, store the reagents at 2-8ºC. This kit is stable if unopened for 12 months from the date of manufacture. Do not use components beyond the expiration date printed on the kit box label.

Opened reagents must be stored at 2-8ºC and should be used in a timeframe according to specific reagent guidelines.

Assay Preparation:
Instrument Setup
- Wavelength: 340 nm
- Mode: Kinetic, Read at ≤30 sec. intervals

Reagent Preparation:
Assay Buffer
Supplied ready to use

GSSG Reagent
Supplied ready to use

NADPH
Reconstitute each bottle NADPH with 1 bottle NADPH Diluent. Stored cold and in the original bottle, the reconstituted NADPH is stable for up to 14 days. The consequence of NADPH degradation in solution is the reduction of the assay range.

GR Calibrator
The GR Calibrator is supplied as a solution of GR in Assay Buffer at 1-1.5 units per mL with the assigned GR activity provided on the vial label. To obtain a calibration curve, the Calibrator should be diluted with Assay Buffer targeting 20-25 mU GR activity/mL reaction mixture. For highest standard.

Example for Calibrator = 1440 mU/mL:
Add 78 μL GR Calibrator as supplied to 1500 μL Assay Buffer to create a 75 mU/mL Working Stock then additionally dilute as follows:

<table>
<thead>
<tr>
<th>Diluted GR (from 50 mU/mL stock) (μL)</th>
<th>Assay Buffer (μL)</th>
<th>Diluted Calibrator Activity (mU/mL)</th>
<th>Calibrator Activity in The Reaction Mixture (mU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1400</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>200</td>
<td>1300</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td>1200</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

Performance Characteristics (continued):
Dynamic Range
Under standard conditions, the oxidation of NADPH is the limiting reaction in determining the upper range of the assay. Samples that exceed the upper limit of the assay can exhaust the available NADPH and tend toward non-linearity. Therefore, the dynamic range for the Microplate Method is 1.5 – 20.0 mU/mL in the Rxm or 7.5 – 200 mU/mL in the diluted sample applied to the plate.

Figure 7: The change in A340 absorbance over a five minute interval with increasing GR activity was monitored. Figure 8: The rate of change in A340 nm absorbance is linearly related to GR activity.

References:

Data Analysis (continued):

\[
\text{GR Activity} = \frac{\Delta A_{340}}{(0.00463 \, \mu M)(V_t)(dilution)} \quad \text{mU/mL}
\]

\[
\text{GR Activity} = \frac{(21.33 - 0.550)(250)(60)}{(4.63)(150)} = 449 \, \text{mU/mL}
\]

Temperature correction

The temperature correction factor is calculated from: \(\sigma = 0.0062T^{1.578} \) (Temperature Dependency, page 5).

\[
\sigma = (0.0062)(27.5)^{1.578} = 1.158
\]

\[
\text{GR Activity} = \frac{\text{mU/mL } (\sigma)}{\text{mg Hb per mL}} = 520 \, \text{mU/mL}
\]

Normalization

The Hb concentration for the lysate is 90 mg/mL. Therefore, normalization to Hb is calculated as:

\[
\text{GR Activity} = \frac{\text{mU GR per mL}}{\text{mg Hb per mL}} \cdot \frac{520}{90} = 5.8 \, \text{mU/mL}
\]

Performance Characteristics:

Sensitivity

Lower Limit of Detection (LLD)\(^2\) = 1.5 mU/mL Reaction Mix

7.5 mU/mL Diluted Sample

Linearity

Over the 0-1 minute interval, there is an increase in the observed A\(_{340}\) that stabilizes after the first minute. The standard method rate curves are then linear to 5 minutes to provide for delays in the start of the A\(_{340}\) measurements.

Sample Handling/Preparation:

General guidelines are provided below for various sample types.

Whole Blood:

Prior to assay, dilute the whole blood sample 1:4 cold water (e.g., 50 \(\mu\)L blood in 200 \(\mu\)L water), mix well and place on ice for 5 minutes to lyse the erythrocytes. Store lysates on ice if assayed the same day; otherwise, store at less than -30\(^\circ\)C until assay. Just before assay, thaw and re-mix lysate if stored frozen, centrifuge and dilute to 5 mg Hb/mL in Assay Buffer.

Erythrocyte Lysate:

Hemoglobin contributes significantly to the absorbance at 340 nm. The concentration of Hb in the assay reaction mixture should not exceed 1 mg/mL.

Whole blood is washed 2-3 times in cold 0.15 M sodium chloride (NaCl). To the packed erythrocytes, add 2-4 volumes of cold deionized water and mix. Place in ice for 5 minutes to complete erythrocyte lysis. Store lysate on ice if assayed the same day; otherwise, store at less than -30\(^\circ\)C until assay. Just before assay, thaw, re-mix lysate, centrifuge and dilute to approximately 5 mg Hb/mL plate in Assay Buffer.

Tissue

Glutathione reductase activity varies with tissue type. The relative GR activity for several murine tissue types is shown in Table 4. The user needs to be aware that the appropriate dilution for the given tissue should be established experimentally. The following guidelines may be useful.

<table>
<thead>
<tr>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>Erythrocyte</td>
<td>Kidney</td>
<td>Skeletal Muscle</td>
</tr>
<tr>
<td>Heart</td>
<td>Heart</td>
<td>Lung</td>
<td>Lens</td>
</tr>
</tbody>
</table>

For example, perfuse tissue (e.g. liver ~ 40 mU/mg protein) to remove erythrocytes. Homogenize 1 part tissue in 9 parts cold buffer (PBS or 50-100 mM phosphate containing 1-2 mM EDTA, pH 7.0-7.6). Remove debris by centrifugation. Store clarified homogenates on ice if assayed the same day; otherwise, store at less than -30\(^\circ\)C until assay. Just before assay, re-mix samples and dilute 1:40 in Assay Buffer.

Plasma

Although it has been reported that patients with various cancers can exhibit elevated GR levels, normal blood plasma or serum typically contains no measurable amounts of GR. Additionally, investigators seeking to measure GR in plasma or serum are cautioned that even slight hemolysis during sample preparation can contribute greatly to measurable GR activity.
Assay Protocol:
1. Prepare samples and calibrators
2. Add 150 µL diluted Sample or Calibrator to wells
3. Add 50 µL GSSG to well
4. Shake gently to mix
5. Pause 1 minute
6. Add 50 µL NADPH to each well
7. Shake gently to mix
8. Pause 1 minute
9. Measure the A\textsubscript{340} nm in 30 second or less intervals for 3 minutes, 25 °C
10. Calculate GR activity

Data Analysis:
The GR Activity can be calculated using the regression parameters of the calibration curve or by using the GR unit definition (page 3). However, since the GR Unit Definition requires strict temperature control, using a calibration curve is advisable. The calibration method is described below.

Determine the slope and intercept of the calibration curve using an appropriate linear regression application. There is no need to subtract a blank value. Example data is shown below in figures 4 and 5. Calibrator values may vary according to lot number received.

Data Analysis (continued):
For each sample, calculate the GR activity using the equation below. Note that the reaction rates in our calculation have been multiplied by -1000 to provide a more convenient number (mRate).

\[
\text{GR Activity} = \frac{(-\text{mRate} - \text{Intercept})(V_t)(\text{dilution})}{(\text{Slope})(V_s)}
\]

Example Calculation:
For example, an RBC lysate was prepared as described previously and assayed with GR calibrators using the standard microplate method. Linear regression parameters were determined using Microsoft Excel slope and intercept functions.

Results
Slope = 3.725
Intercept = .5486
V\textsubscript{t} = 250 µL
V\textsubscript{s} = 150 µL
Dilution of lysate = 1/60
mRate of sample = 21.33 ΔA\textsubscript{340}/min

From the above equation, the sample GR Activity is ...

\[
\text{GR Activity} = \frac{(21.33 - 0.5486)(250)(60)}{3.725(150)} = 558 \text{ mU/mL}
\]

The Hb concentration for the lysate is 90 mg/mL. Therefore, normalization to Hb is ...

\[
\text{GR Activity} = \frac{558 \text{ mU GR per mL}}{90 \text{ mg Hb per mL}} = 6.2 \text{ mU/mg Hb}
\]

Calculation using unit definition.
The GR Activity can be determined using the GR unit definition. However, the GR reaction rate is temperature dependent and requires a thermostatically control plate holder set to 25 °C or the appropriate temperature correction as shown in Temperature Dependency, page 5.

Results
Temperature = 27.5°C
V\textsubscript{t} = 250 µL
V\textsubscript{s} = 50 µL
Dilution of lysate = 1/20.
\[
\begin{align*}
\text{mRate of sample} &= 21.33 \Delta A_{340}/\text{min} \\
\text{mRate of Blank} &= 0.550 \Delta A_{340}/\text{min}
\end{align*}
\]

Figure 4: The change in A\textsubscript{340} absorbance over a three minute interval with increasing GR activity was monitored.

Figure 5: The rate of change in A\textsubscript{340} nm absorbance is linearly related to GR activity.

info@amsbio.com
www.amsbio.com